Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance.
نویسندگان
چکیده
Pretreatment for deconstructing the multifaceted interaction network in crystalline cellulose is a limiting step in making fuels from lignocellulosic biomass. Not soluble in water and most organic solvents, cellulose was found to dissolve in certain classes of ionic liquids (ILs). To elucidate the underlying mechanisms, we simulated cellulose deconstruction by peeling off an 11-residue glucan chain from a cellulose microfibril and computed the free-energy profile in water and in 1-butyl-3-methylimidazolium chloride (BmimCl) IL. For this deconstruction process, the calculated free-energy cost/reduction in water/BmimCl is ∼2 kcal/mol per glucose residue, respectively. To unravel the molecular origin of solvent-induced differences, we devised a coarse graining scheme to dissect force interactions in simulation models by a force-matching method. The results establish that solvent-glucan interactions are dependent on the deconstruction state of cellulose. Water couples to the hydroxyl and side-chain groups of glucose residues more strongly in the peeled-off state but lacks driving forces to interact with sugar rings and linker oxygens. Conversely, BmimCl demonstrates versatility in targeting glucose residues in cellulose. Anions strongly interact with hydroxyl groups, and the coupling of cations to side chains and linker oxygens is stronger in the peeled-off state. Other than enhancing anion-hydroxyl group coupling, coarse-grain analysis of force interactions identifies configuring cations to target side chains and linker oxygens as a useful design strategy for pretreatment ILs. Furthermore, the state dependence of solvent-glucan interactions highlights specific stabilization and/or frustration of the different structure states of cellulose as important design parameters for pretreatment solvents.
منابع مشابه
Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review
Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose f...
متن کاملOvercoming Biomass Recalcitrance by Combining Genetically Modified Switchgrass and Cellulose Solvent-Based Lignocellulose Pretreatment
Decreasing lignin content of plant biomass by genetic engineering is believed to mitigate biomass recalcitrance and improve saccharification efficiency of plant biomass. In this study, we compared two different pretreatment methods (i.e., dilute acid and cellulose solvent) on transgenic plant biomass samples having different lignin contents and investigated biomass saccharification efficiency. ...
متن کاملLocal Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications.
Pretreatment facilitates more complete deconstruction of plant biomass to enable more economic production of lignocellulosic biofuels and byproducts. Various co-solvent pretreatments have demonstrated advantages relative to aqueous-only methods by enhancing lignin removal to allow unfettered access to cellulose. However, there is a limited mechanistic understanding of the interactions between t...
متن کاملFundamentals of Biomass Pretreatment by Fractionation
With the rise in global energy demand and environmental concerns about the use of fossil fuels, the need for rapid development of alternative fuels from sustainable, non-food sources is now well acknowledged. The effective utilization of low-cost high-volume agricultural and forest biomass for the production of transportation fuels and bio-based materials will play a vital role in addressing th...
متن کاملPlant cell wall characterization using scanning probe microscopy techniques
Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 35 شماره
صفحات -
تاریخ انتشار 2011